
bezierplot

Linus Romer

November 2, 2024

1 Introduction

bezierplot is a Lua program as well as a (Lua)LATEX package. This document describes
both.

Given a smooth function, bezierplot returns a smooth bezier path written in TikZ
notation (which also matches METAPOST) that approximates the graph of the function.
For polynomial functions of degree ≤ 3 and inverses of them, the approximation is exact
(up to numeric precision). bezierplot finds special graph points such as extreme points
and inflection points and reduces the number of used points.

The following example will show a comparison of gnuplot with bezierplot for the
function y =

√
x for 0 ≤ x ≤ 5:

bezierplot gnuplot

gnuplot used 51 samples (no smoothing) and is still quite inexact at the beginning, whereas
bezierplot uses 4 points only and is exact (up to numeric precision)!

2 Installation

As bezierplot is written in Lua, the installation depends whether you are using LuaLATEX
or another LATEX engine.

2.1 Installation For LuaLATEX

If you have installed bezierplot by a package manager, the installation is already complete.
The manual installation of bezierplot is done in 2 steps:

• copy the files bezierplot.lua and bezierplot.sty somewhere in your texmf tree
(e.g. to ~/texmf/tex/lualatex/bezierplot/bezierplot.sty and
~/texmf/scripts/bezierplot/bezierplot.lua)

• update the ls-R databases by running mktexlsr

2.2 Additional Installation Steps For Other LATEX Engines

You will have to call bezierplot as an external program via the option --shell-escape

(--write18 for MiKTEX). Therefore, bezierplot.lua has to be copied with the name
bezierplot to a place, where your OS can find it. Under Linux this usually means copying
to the directory /usr/local/bin/, but for Windows this will probably include more steps

1

(like adding to the PATH). Of course, Lua has to be installed as well. As soon as you can call
bezierplot from a command line (e.g. by typing bezierplot "x^2"), it should also work
with other LATEX engines.

3 Loading

The bezierplot package is loaded with \usepackage{bezierplot}. There are no loading
options for the package.

4 Usage

A minimal example of LuaLATEX document
could be:

\documentclass{article}

\usepackage{tikz,bezierplot}

\begin{document}

\tikz \draw \bezierplot{x^2};

\end{document}

The command \bezierplot has 6 optional arguments in the sense of

\bezierplot[XMIN][XMAX][YMIN][YMAX][SAMPLES]{FUNCTION}

The defaults are XMIN = YMIN = −5, XMAX = YMAX = 5 and SAMPLES = 0 (this will set as
few samples as possible).

\bezierplot[-1][2]{x^2} \bezierplot[-1][2][0.5][3]{x^2}

You may reverse the graph by making XMIN bigger than XMAX. E.g.

\bezierplot[-5][5]{0.5*x+1}

returns (-5,-1.5) -- (5,3.5), whereas

\bezierplot[5][-5]{0.5*x+1}

returns the reversed path (5,3.5) -- (-5,-1.5). This is useful, if you want to cycle a
path to a closed area:

\begin{tikzpicture}

\fill[black!30] \bezierplot[-1][1]{2-x^2}

-- \bezierplot[1][-1]{x^3-x} -- cycle;

\draw \bezierplot[-1.1][1.1]{2-x^2};

\draw \bezierplot[-1.1][1.1]{x^3-x};

\end{tikzpicture}

2

4.1 Running Raw bezierplot

Of course, you can run bezierplot.lua in a terminal without using LATEX, e.g.

lua bezierplot.lua "3*x^0.8+2"

will return

(0,2) .. controls (0.03,2.282) and (0.268,3.244) .. (1,5)

You can set the window of the graph and the number of samples as follows:

lua bezierplot.lua "FUNCTION" XMIN XMAX YMIN YMAX SAMPLES

e.g.

lua bezierplot.lua "FUNCTION" 0 1 -3 2.5 201

will set 0 ≤ x ≤ 1 and −3 ≤ y ≤ 2.5 and 201 equidistant samples. You may also omit the
y–range, hence

lua bezierplot.lua "FUNCTION" 0 1

will set 0 ≤ x ≤ 1 and leave the default −5 ≤ y ≤ 5. The variables XMIN, XMAX, YMIN and
YMAX may also be computable expressions like 2*pi+6:

lua bezierplot.lua "sin(x)" -pi pi

4.2 Notation Of Functions

The function term given to bezierplotmust contain at most one variable: x. E.g. "2.3*(x-1)^2-3".
You must not omit * operators:

wrong: ����
2x(x+1) correct: 2*x*(x+1)

You have two possibilities to write powers: "x^2" and "x**2" both mean x2.

The following functions and constants are possible:

abs absolute value (remember: your function should still be smooth)
acos cos−1 inverse function of cosine in radians
asin sin−1 inverse function of sine in radians
atan tan−1 inverse function of tangent in radians
cbrt cube root 3

√
that works for negative numbers, too

cos cosine for angles in radians
cosh hyperbolic cosine
deg converts from radians to degrees
exp the exponential function e()

huge the numerical ∞
e the euler constant e = exp(1)
log the natural logarithm loge()
pi Archimedes’ constant π ≈ 3.14
rad converts from degrees to radians
sgn sign function
sin sine for angles in radians
sinh hyperbolic sine
sqrt square root

√

tan tangent for angles in radians
tanh hyperbolic tangent

3

5 Examples of bezierplot in Comparison with gnuplot

The following graphs are drawn with bezierplot (black) and gnuplot (red). You may not
recognize the red behind the black unless you zoom in. gnuplot used 1000 samples per
example. The functions are given below the pictures (left: bezierplot, right: gnuplot).

0.32*x-0.7 | 0.32*x-0.7

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

-x^2+4 | -x**2+4

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

(x+1)*x*(x-1) | (x+1)*x*(x-1)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x^0.5 | x**0.5

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

cbrt(x) | sgn(x)*abs(x)**(1/3.)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x^3*(x-1) | x**3*(x-1)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

2*cos(3*x+4)+3 | 2*cos(3*x+4)+3

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

tan(x) | tan(x)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

x+0.5*sin(x) | x+0.5*sin(x)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

2*x^2/(3*x-3) | 2*x**2/(3*x-3)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

4-exp(x) | 4-exp(x)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

log(x+4) | log(x+4)

x

y

-4 -3 -2 -1 1 2 3 4

-4

-3

-2

-1

1

2

3

4

4

